- IGBP -An Earth System Perspective on Non-CO₂ Greenhouse Gases

Sybil Seitzinger Geosphere-Biosphere Prog

International Geosphere-Biosphere Programme (IGBP) Stockholm www.igbp.net

NCGG-5, 2 July 2009 Wageningen, The Netherlands

Studying the Earth System

Disciplinary research needed to understand the pieces of the puzzle

Some of the pieces lack detail, others are missing entirely - but...

Studying the Earth System

We need to put together the puzzle

Earth System functions

Address policy relevant questions

International Geosphere Biosphere Program IGBP

- Interactions among biological, chemical, and physical processes and human systems
- Issues relevant to society
- Interdisciplinary
- Earth System context

IGBP Core Projects

An Integrated Earth System

The natural cycling of the planet

An Integrated Earth System

Sea Level Indicator del ¹⁸O CO₂, ppm CH₄, ppb N₂O, ppb

Dust Proxy

Lisiecki and Raymo 2005 Luthi et al. 2008 Loulergue et al. 2008 Spahni et al. 2005 Wolff et al. 2006, others

Annually aver. surface air temperature anomalies (1900 – 2006)

Annually aver. surface air temperature increase due to CO_2 + short-lived pollutants (lifetimes of weeks to years)

Black Carbon - Snow/Ice Albedo Feedback

Nitrogen oxides, emissions in 2000

(total 21 919 kt N)

BC Sources

Soot deposition darkens surface ⇒ more solar energy absorbed ⇒ increases surface BAI temperature ⇒ snow melts ⇒ more solar energy absorbed ⇒ increases surface G B F temperature (same effect GHGs)

Variation in Radiative Forcing among GCMs (AR4) Contribution from Aerosols, Ozone and NCGG??

Shindell et al. 2009 IGAC Newsletter & B. Soden, pers. comm.

Model Intercomparison Model – Data Comparison Hindcasting Aerosols, Ozone and NCGG

Contribution to Tropospheric O₃ columns - % of total Pfister et al. 2008 JGR MOZART-4

Oceans Cover 71% of Earth's Surface

Ocean-Derived Organic Aerosols: Production and Impact

Charlson et al. 1987

Oceans Cover 71% of Earth's Surface

Phytoplankton and Cloudiness in the Southern Ocean Marine Aerosol Formation

solas solas

Meskhidze & Nenes 2006 Science

Phytoplankton and Cloudiness in the Southern Ocean Marine Aerosol Formation

Decrease short wave radiation flux top of atmosphere -15 Watts/m2

Chlorophyll a (SeaWiFS)

Cloud Effective Radius

Production of Food & Energy

 have >2x input of fixed N to terrestrial ecosystems

Nitrogen Atmospheric Deposition from:fossil fuel combustion, agriculture and natural sources

Galloway, J.N. et al., 2008. Science 320, 889-892.

Impacts of Atmospheric Nitrogen Deposition on the Ocean

1860

2000

- Low level ocean fertilization
 - ~1/3 of ocean's external nitrogen
- ~10% of anthropogenic CO₂ drawdown
- Increased N₂O emissions (up to 1.2 Tg N/yr)

Duce et al. 2008 Science

Rising CO₂ Conc. Increases Ocean Acidity

Hoegh-Guldberg et al. 2007 Science

The Ocean in a High-CO₂ World Symposia October 2008, Monaco

220 participants from 32 countries www.ocean-acidification.net

Ocean Acidification is Happening Now and is Measurable

David Karl, University of Hawaii

The Oceans are Acidifying Fast

at a rate and to a level not experienced by marine organisms for at least 20MY

Avoiding Dangerous Climate Change (Turley et al 2006)

Effects of Rising Atmospheric CO₂ on Coral Reefs

Atmospheric CO₂ concentration

Models of ocean

chemistry suggest that hard corals will be unable to build reefs (aragonite) or that coral reefs may even begin to dissolve due to ocean acidification within next 40 years.

Ω Aragonite

2

Level below which hard corals cannot build reefs

Climate Change and Rising CO₂ Impacts on Coral Reefs

Examples of what the future might look like (photos from the Great Barrier Reef)

"Healthy" Coral reef

"Bleached" coral reef large areas already, most coral reefs in the next few decades "Dead" reef middle to end of the 21st century

Hoegh-Guldberg et al. 2007 Science

Second Symposium on The Ocean in a High-CO₂ World October 2008, Monaco

- Press Releases, media reports, Monaco Declaration
- Fact Sheet on Ocean Acidification
- Special Issue of Biogeosciences
- Research Priorities Report
- Oceanography Magazine article
- Summary for Policymakers

www.ocean-acidification.net

IGBP

Network of scientists around the world

- Interactions among biological, chemical, and physical processes and human systems
- Issues relevant to society
- Interdisciplinary and integration
- Earth System context

www.IGBP.net

